CDMS Progress and Plans

Progress at Soudan

Steady running at 50 mK since November 2006!

More than 1500 kg-days Ge detector exposure

Prospects at Soudan

Installation of new detectors planned for 2009

The Future - SuperCDMS

Phased deployment at Soudan -> SNOLAB

Eventual goal is x100 improved sensitivity to WIMPs

CDMS in a nutshell

Layered shielding (Cu, Pb, polyethylene) reduces radioactive backgrounds and active scintillator veto is >99.9% efficient against cosmic rays. Soudan overburden (2341') reduces cosmic ray flux.

All experimenters meeting - July 7, 2008

Dan Bauer - CDMS Project Manager

Cryogenics and Detectors

- Cryogenics Upgrades (2005-2006)
 - Better vacuum to improve stability, decrease maintenance
 - Better remote control and monitoring (experiment can be operated from surface)
 - Improved cooling at 4K with cryocooler on electronics stem; reduce Lhe consumption, costs; had to deal with vibration problems
- Detector Payload
 - 30 detectors (19 Ge, 11 Si); total of 4.5 kg Ge, 1 kg Si
 - Thermal connections to refrigerator improved to reach base temperature of 42 mK

Dan Bauer - CDMS Project Manager

>1.5 years of data taking at Soudan

Operational Issues

- Occasional short (~1 week) warming to 4-77K necessary
 - Service pumps, clean 3He/4He mixture
 - Eliminate frozen air accumulation from small leaks
- Nearly immune to main power outages
 - Underground diesel generator backs up entire cryogenics system
 - Sufficient UPS to maintain electronics for ~ 1hour
 - Remote control, monitoring and analysis from surface

Underground diesel generator to maintain cryogenics

Upcoming Maintenance Issues (2009)

Replace vacuum bulkhead box where signals emerge (ebox)

Continuing small air leak is troublesome New ebox tested and ready to ship to Soudan

Replace cryocooler head

Already at 150% of recommended lifetime No sign of degradation yet, but better to be safe than sorry

Two small dark clouds on the horizon

Soudan underground power feed

Recently repairs after lightning strikes required outages

Near maximum capacity; may need new feed to maintain CDMS/MINOS

Helium costs and availability

He costs are skyrocketing and availability is becoming an issue

36% increase in costs this summer

Several instances where supply was very tight in last couple of years

CDMS uses about 70I/day

Possible solution: He liquefier at Soudan

Cryocooler-based liquefiers are now available

Low maintenance, and low power (~7.5 kw), but capacity ~ 10 l/day

Capital cost ~ \$60K

Have surplus piston liquefier at FNAL

Much higher capacity (20 l/hour), enough for our whole usage!

But significant maintenance required (tech travel to Soudan)

Consume a lot of electric power (30-40 kW)

The Future: SuperCDMS

- Science goals
 - Increase sensitivity by x100 (compared with current)
 - Reach WIMP-nucleon cross section of 10⁻⁴⁶ cm²
 - Find WIMP signal and compare with LHC
- Technical goals
 - Increase detector mass in stages
 - Soudan (4 kg -> 15 kg by 2010)
 - SNOLAB (100 kg by 2012)
 - Stay background free
 - Challenge to deal with existing backgrounds at Soudan
 - New experiment needed at SNOLAB to reduce neutron background
- Current status
 - First Soudan stage funded by DOE/NSF
 - SNOLAB experiment has CD-0 and Stage 1 approval from FNAL Director
 - DMSAG review in 2009 needed for DOE/NSF to approve

SuperCDMS

2008	200)9	2010	2011	1	2012	2013	2014	2015
CDMS II Soudan (4 kg Ge, 1E-44)		Sou	perCDMS Idan kg Ge, 3E-45)					
SuperTow (each towe			e)						
Larger	Larger detector R&D					or fabrication 25 kg Ge			
Design SNO Infrastructur			Build S Infrast	SNOLAB ructure		SuperCDMS SNOLAB (25 kg Ge, 1E-45)	Super	CDMS SNOLA (g Ge, 1E-46)	AB
SuperCDMS Detector Dev DOE: \$2M NSF: \$3.8M			uperCDMS Soudan OE: \$3M NSF: \$3M			1L-43)	SuperCDMS Operations		
			nced Detector a \$1M NSF: \$1N	1			DOE: \$2M NSF: \$2M		
SuperCDMS SNOLAB Construction DOE: \$5M NSF: \$5M CFI: \$3.5M Proposals									

Goals 1E-44 1E-45 1E-46